

P-Channel Enhancement Mode Field Effect Transistor

Features

 $V_{DS}(V) = -30V, I_{D} = -4.2A,$

 $R_{DS(ON)} = 52m \Omega$ @Vgs = -10V.

RDS(ON) = $68m \Omega$ @VGS = -4.5V.

High density cell design for low RDS(ON).

General Description

This P-Channel enhancement mode power FETs are produced with high cell density, DMOS trench technology, which is especially used to minimize on-state resistance. This device is particularly suited for low voltage application such as portable equipment, power management and other battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.

Pin Configurations

• Absolute Maximum Ratings $@T_A=25^{\circ}C$ unless otherwise noted

Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		VDSS	-30	V	
Gate-Source Voltage		Vess	±20	V	
Drain Current (Note 1)	Continuous T _A =25°C	lp	-4.2	Α	
	Pulsed (Note 2)	טו	-50	А	
Total Power Dissipation (Note 1)		Po	1000	mW	
Operating and Storage Junction Temperature Range		Тյ, Тѕтс	-55 to +150	°C	

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	V _{(BR)DSS}	Ves = 0 V, In = 250 μ A	-30	-34		V			
Zero Gate Voltage Drain Current	Idss	V _{DS} = -24 V, V _{GS} = 0 V		-3	-200	nA			
Gate–Body Leakage Current	less	Vgs = ± 20 V, Vps = 0 V		±1.5	±50	nA			
ON CHARACTERISTICS									
Gate Threshold Voltage	V _G S(TH)	V _{DS} = V _{GS} , I _D =-250 μ A	-1	-1.3	-3	V			
Drain-Source On-State Resistance	Rds(on)	Vgs = -10 V, ID = -5 A		52	65	m 0			
		Vgs = -4.5 V, ID = -4 A		68	85	mΩ			
Forward Transconductance	Grs	VDS = -5 V, ID = -6 A		12		S			
DYNAMIC CHARACTERISTICS									
Input Capacitance	Cıss			550		pF			
Output Capacitance	Coss	V _{DS} = -15 V, V _{GS} = 0 V, F = 1.0 MHz		60					
Reverse Transfer Capacitance	Crss			50					
	SWITCHING	CHARACTERISTICS							
Turn-On Delay Time	Td(on)	$V_{DS} = \text{-15 V}, RL = 2.5 \Omega ,$		8.6		- nS			
Turn–Off Delay Tim	Td(OFF)	Vgs = -10V, Rgen=3 Ω		28.2					
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS									
Diode Forward Voltage	Vsd	Vgs = 0 V, Is = -1 A		-0.81		V			

Notes

- 1. Pulse width limited by maximum junction temperature.
- 2. Pulse test: PW≤300 μ s, duty cycle≤2%.
- 3. Guaranteed by design, not subject to production testing.
- 4. Surface Mounted on FR4 Board,T < 5 sec.

Typical Performance Characteristics (TJ =25 Noted)

Figure 1. Output Characteristics

Figure 2. Transfer Characteristics

Figure 4. On Resistance Vs. Temperature

Figure 5. Gate Thershold Vs. Temperature

V_{SD}, Body Diode Forward Voltage (v) Figure 6.Body Diode Forward Voltage

Package Information

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.197	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550 REF		0.061 REF		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP		0.060TYP		
e1	3.000 TYP		0.118TYP		
L	0.900	1.200	0.035	0.047	

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Team-tech assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Team-tech reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.