

N- and P-Channel 30-V (D-S) MOSFET

General Description

B3942 is the N- and P-Channel logic enhancement mode power field effect transistor using high cell density, DMOS trench technology in production. This high density process is especially tailored to minimize on-state resistance. The device is particularly suitable for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits where high-side switching and low in-line power loss are needed in a very small outline surface mount package.

Features

- $R_{DS(ON)}=24m\Omega@V_{GS}=10V$ (N-Ch)
- $R_{DS(ON)}=38m\Omega@V_{GS}=4.5V$ (N-Ch)
- $R_{DS(ON)}=25m\Omega@V_{GS}=-10V$ (P-Ch)
- $R_{DS(ON)}=26m\Omega@V_{GS}=-4.5V$ (P-Ch)
- Super High Density Cell Design for Extremely Low R_{DS(ON)}
- Exceptional On-Resistance and Maximum DC Current
- SOP-8 Package

Pin Configuration

Applications

- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC

Absolute Maximum Ratings (TA=25°C Unless Otherwise Noted):

Parameter		Symbol	N-Channel	P-Channel	Unit
Drain-Source Voltage		V_{DSS}	30	-30	٧
Gate-Source Voltage		V_{GSS}	±20	±20	٧
Continuous Drain Current(tJ=150°C)	TA=25°C	I_D	6.9	-6.1	Α
	TA=70°C		5.5	-4.9	
Pulsed Drain Current		I _{DM}	30	-30	Α
Continuous Source Current (Diode Conduction)		I _S	1.7	-1.7	Α
Maximum Power Dissipation	TA=25°C	P_{D}	2.0		w
	TA=70°C		1.44		
Operating Junction Temperature		Τυ	-55 to 150		$^{\circ}\!\mathbb{C}$
Thermal Resistance-Junction to Case		RθJC	62.5		°C/W