

STH60N05FI

N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR

TYPE	Voss	R _{DS(on)}	l _D
STH60N05	50 V	0.023 Ω	60 A
STH60N05FI	50 V	$0.023~\Omega$	36 A

- AVALANCHE RUGGEDNESS TECHNOLOGY
- 100% AVALANCHE TESTED
- REPETITIVE AVALANCHE DATA AT 100°C
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- 175°C OPERATING TEMPERATURE FOR STANDARD PACKAGE
- VERY LOW RDS(on)
- APPLICATION ORIENTED CHARACTERIZATION
- ISOLATED PACKAGE UL RECOGNIZED, ISOLATION TO 4000V DC

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS
- REGULATORS

- DC-DC & DC-AC CONVERTERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- AUTOMOTIVE ENVIRONMENT (INJECTION, ABS, AIR-BAG, LAMPDRIVERS, Etc.)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Va	lue	Unit	
		STH60N05	0		
VDS	Drain-source Voltage (V _{GS} = 0)	5	50	V	
VDGR	Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	5	50	V	
V_{GS}	Gate-source Voltage	±	20	V	
l _D	Drain Current (continuous) at T _c = 25 °C(#)	60	36	Α	
ΙD	Drain Current (continuous) at Tc = 100 °C	45	22	Α	
I _{DM} (●)	Drain Current (pulsed)	240	240	А	
P _{tot}	Total Dissipation at T _c = 25 °C	180	60	W	
	Derating Factor	1.2	0.48	W/°C	
T_{stg}	Storage Temperature	-65 to 175	-65 to 150	°C	
T_{j}	Max. Operating Junction Temperature	175	150	°C	
Dules wind	th limited by sefe encreting eres				

^(•) Pulse width limited by safe operating area

(#) T_c = 50 °C for TO-218

May 1992

1/6

THERMAL DATA

			TO-218	ISOWATT218	
Rhecais	Thermal Resistance Junction-case	Max	0.83	2.08	°C/W
R _{thi amb}	Thermal Resistance Junction-ambient	Max		30	°C/W
Ribosinic	Thermal Resistance Case-sink	Тур		0.1	°C/W
T ₁	Maximum Lead Temperature For Soldering P	urpose		300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
lan	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_1 max, $\delta < 1\%$)	60	Α
Eas	Single Pulse Avalanche Energy (starting $T_1 = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 25$ V)	700	LmJ
EAR	Repetitive Avalanche Energy (pulse width limited by T_1 max. $\delta < 1\%$)	170	mJ
IAR	Avalanche Current, Repetitive or Not-Repetitive ($T_c = 100$ °C, pulse width limited by T_j max, $\delta < 1\%$)	36	А

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ o C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA V _{GS} = 0	50			٧
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating x 0.8 T_c = 125 °C			250 1000	μ Α μ Α
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	2	 [4	٧
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10V$ $I_{D} = 30 \text{ A}$ $V_{GS} = 10V$ $I_{D} = 30 \text{ A}$ $T_{c} = 100^{\circ}\text{C}$			0.023 0.046	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	60			Α

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
gfs (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 30 \text{ A}$	16			S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0		2500 950 250	3000 1200 350	pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
t _{d(on)}	Turn-on Time Rise Time	$V_{DD} = 40 \text{ V}$ $I_D = 60 \text{ A}$ $R_G = 50 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit, figure 3)		120 320	160 430	ns ns
(di/dt) _{on}	Turn-on Current Slope	$V_{DD} = 40 \text{ V}$ $I_D = 60 \text{ A}$ $R_G = 50 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit. figure 5)		160		A/μs
Qg	Total Gate Charge	V _{DD} = 25 V I _D = 30 A V _{GS} = 10 V		65	90	nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
tr(Voff)	Off-voltage Rise Time	$V_{DD} = 40 \text{ V}$ $I_D = 60 \text{ A}$		170	230	ns
tı	Fall Time	$R_G = 50 \Omega$ $V_{GS} = 10 V$	1	170	230	ns
tc	Cross-over Time	(see test circuit, figure 5)		340	460	ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)			i	60 240	A A
V _{SD} (*)	Forward On Voltage	I _{SD} = 60 A V _{GS} = 0			1.7	V
t _{rr}	Reverse Recovery	I _{SD} = 60 A di/dt = 100 A/μs V _{DD} = 25 V T _i = 150 °C		120		ns
Qrr	Reverse Recovery Charge	(see test circuit, figure 5)		0.25		μC
IRRM	Reverse Recovery			5		۸ .

Thermal Impedance For TO-218

Derating Curve For TO-218

Output Characteristics

Thermal Impedance For ISOWATT218

Derating Curve For ISOWATT218

Transfer Characteristics

4/6

Transconductance

Gate Charge vs Gate-source Voltage

Normalized Gate Threshold Voltage vs Temperature

Static Drain-source On Resistance

Capacitance Variations

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

Fig. 2: Unclamped Inductive Waveforms

Fig. 4: Gate Charge Test Circuit

Fig. 1: Unclamped Inductive Load Test Circuits

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Reverse Recovery Time

