STH60N05FI # N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTOR | TYPE | Voss | R _{DS(on)} | l _D | |------------|------|---------------------|----------------| | STH60N05 | 50 V | 0.023 Ω | 60 A | | STH60N05FI | 50 V | $0.023~\Omega$ | 36 A | - AVALANCHE RUGGEDNESS TECHNOLOGY - 100% AVALANCHE TESTED - REPETITIVE AVALANCHE DATA AT 100°C - LOW GATE CHARGE - HIGH CURRENT CAPABILITY - 175°C OPERATING TEMPERATURE FOR STANDARD PACKAGE - VERY LOW RDS(on) - APPLICATION ORIENTED CHARACTERIZATION - ISOLATED PACKAGE UL RECOGNIZED, ISOLATION TO 4000V DC #### **APPLICATIONS** - HIGH CURRENT, HIGH SPEED SWITCHING - SOLENOID AND RELAY DRIVERS - REGULATORS ---- - DC-DC & DC-AC CONVERTERS - MOTOR CONTROL, AUDIO AMPLIFIERS - AUTOMOTIVE ENVIRONMENT (INJECTION, ABS, AIR-BAG, LAMPDRIVERS, Etc.) #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Va | lue | Unit | | |---------------------|---|------------|------------|------|--| | | | STH60N05 | 0 | | | | VDS | Drain-source Voltage (V _{GS} = 0) | 5 | 50 | V | | | VDGR | Drain- gate Voltage ($R_{GS} = 20 \text{ k}\Omega$) | 5 | 50 | V | | | V_{GS} | Gate-source Voltage | ± | 20 | V | | | l _D | Drain Current (continuous) at T _c = 25 °C(#) | 60 | 36 | Α | | | ΙD | Drain Current (continuous) at Tc = 100 °C | 45 | 22 | Α | | | I _{DM} (●) | Drain Current (pulsed) | 240 | 240 | А | | | P _{tot} | Total Dissipation at T _c = 25 °C | 180 | 60 | W | | | | Derating Factor | 1.2 | 0.48 | W/°C | | | T_{stg} | Storage Temperature | -65 to 175 | -65 to 150 | °C | | | T_{j} | Max. Operating Junction Temperature | 175 | 150 | °C | | | Dules wind | th limited by sefe encreting eres | | | | | ^(•) Pulse width limited by safe operating area (#) T_c = 50 °C for TO-218 May 1992 1/6 #### THERMAL DATA | | | | TO-218 | ISOWATT218 | | |----------------------|--|--------|--------|------------|------| | Rhecais | Thermal Resistance Junction-case | Max | 0.83 | 2.08 | °C/W | | R _{thi amb} | Thermal Resistance Junction-ambient | Max | | 30 | °C/W | | Ribosinic | Thermal Resistance Case-sink | Тур | | 0.1 | °C/W | | T ₁ | Maximum Lead Temperature For Soldering P | urpose | | 300 | °C | #### AVALANCHE CHARACTERISTICS | Symbol | Parameter | Max Value | Unit | |--------|--|-----------|------| | lan | Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_1 max, $\delta < 1\%$) | 60 | Α | | Eas | Single Pulse Avalanche Energy (starting $T_1 = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 25$ V) | 700 | LmJ | | EAR | Repetitive Avalanche Energy (pulse width limited by T_1 max. $\delta < 1\%$) | 170 | mJ | | IAR | Avalanche Current, Repetitive or Not-Repetitive ($T_c = 100$ °C, pulse width limited by T_j max, $\delta < 1\%$) | 36 | А | # **ELECTRICAL CHARACTERISTICS** ($T_{case} = 25$ o C unless otherwise specified) # OFF | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |----------------------|--|--|------|------|-------------|--------------------------| | V _{(BR)DSS} | Drain-source
Breakdown Voltage | I _D = 250 μA V _{GS} = 0 | 50 | | | ٧ | | I _{DSS} | Zero Gate Voltage
Drain Current (V _{GS} = 0) | V_{DS} = Max Rating V_{DS} = Max Rating x 0.8 T_c = 125 °C | | | 250
1000 | μ Α
μ Α | | I _{GSS} | Gate-body Leakage
Current (V _{DS} = 0) | V _{GS} = ± 20 V | | | ± 100 | nA | # ON (*) | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |---------------------|--------------------------------------|--|------|-------|----------------|------| | V _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}$ $I_D = 250 \mu A$ | 2 |
[| 4 | ٧ | | R _{DS(on)} | Static Drain-source On
Resistance | $V_{GS} = 10V$ $I_{D} = 30 \text{ A}$
$V_{GS} = 10V$ $I_{D} = 30 \text{ A}$ $T_{c} = 100^{\circ}\text{C}$ | | | 0.023
0.046 | Ω | | I _{D(on)} | On State Drain Current | $V_{DS} > I_{D(on)} \times R_{DS(on)max}$
$V_{GS} = 10 \text{ V}$ | 60 | | | Α | #### DYNAMIC | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |--|--|--|------|--------------------|---------------------|----------------| | gfs (*) | Forward
Transconductance | $V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 30 \text{ A}$ | 16 | | | S | | C _{iss}
C _{oss}
C _{rss} | Input Capacitance
Output Capacitance
Reverse Transfer
Capacitance | V _{DS} = 25 V f = 1 MHz V _{GS} = 0 | | 2500
950
250 | 3000
1200
350 | pF
pF
pF | # **ELECTRICAL CHARACTERISTICS** (continued) #### SWITCHING ON | Symbol | Parameter | Test Conditions | Min. | Typ. | Max. | Unit | |-----------------------|---------------------------|---|------|------------|------------|----------| | t _{d(on)} | Turn-on Time
Rise Time | $V_{DD} = 40 \text{ V}$ $I_D = 60 \text{ A}$ $R_G = 50 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit, figure 3) | | 120
320 | 160
430 | ns
ns | | (di/dt) _{on} | Turn-on Current Slope | $V_{DD} = 40 \text{ V}$ $I_D = 60 \text{ A}$ $R_G = 50 \Omega$ $V_{GS} = 10 \text{ V}$ (see test circuit. figure 5) | | 160 | | A/μs | | Qg | Total Gate Charge | V _{DD} = 25 V I _D = 30 A V _{GS} = 10 V | | 65 | 90 | nC | #### SWITCHING OFF | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |----------|-----------------------|--|------|------|------|------| | tr(Voff) | Off-voltage Rise Time | $V_{DD} = 40 \text{ V}$ $I_D = 60 \text{ A}$ | | 170 | 230 | ns | | tı | Fall Time | $R_G = 50 \Omega$ $V_{GS} = 10 V$ | 1 | 170 | 230 | ns | | tc | Cross-over Time | (see test circuit, figure 5) | | 340 | 460 | ns | #### SOURCE DRAIN DIODE | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |---|--|---|------|------|-----------|--------| | I _{SD}
I _{SDM} (•) | Source-drain Current
Source-drain Current
(pulsed) | | | i | 60
240 | A
A | | V _{SD} (*) | Forward On Voltage | I _{SD} = 60 A V _{GS} = 0 | | | 1.7 | V | | t _{rr} | Reverse Recovery | I _{SD} = 60 A di/dt = 100 A/μs
V _{DD} = 25 V T _i = 150 °C | | 120 | | ns | | Qrr | Reverse Recovery
Charge | (see test circuit, figure 5) | | 0.25 | | μC | | IRRM | Reverse Recovery | | | 5 | | ۸ . | #### Thermal Impedance For TO-218 #### Derating Curve For TO-218 # **Output Characteristics** # Thermal Impedance For ISOWATT218 # Derating Curve For ISOWATT218 #### Transfer Characteristics 4/6 #### Transconductance # Gate Charge vs Gate-source Voltage # Normalized Gate Threshold Voltage vs Temperature #### Static Drain-source On Resistance #### Capacitance Variations #### Normalized On Resistance vs Temperature #### Source-drain Diode Forward Characteristics Fig. 2: Unclamped Inductive Waveforms Fig. 4: Gate Charge Test Circuit Fig. 1: Unclamped Inductive Load Test Circuits Fig. 3: Switching Times Test Circuits For Resistive Load Fig. 5: Test Circuit For Inductive Load Switching And Diode Reverse Recovery Time