

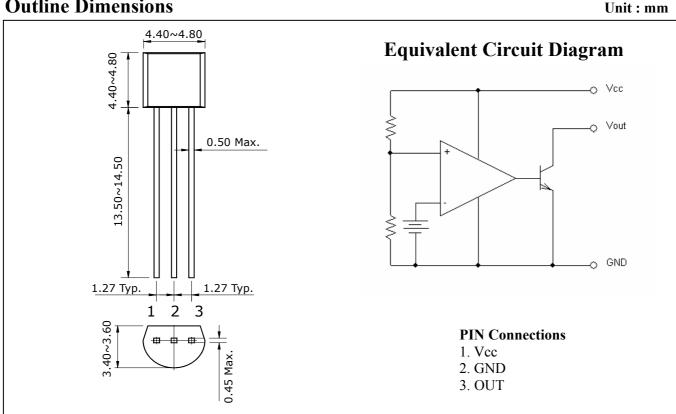
Description

• The S71xx prevents the error of system from supply voltage below normal voltage level at the time the power on and instantaneous power off in systems.

Features

- Current Consumption is Low ($I_{CCL}=300 \,\mu A$ Typ. $I_{CCH}=30 \,\mu A$ Typ.)
- Resetting Output Minimum Guarantee Voltage is Low (0.8V Typ.)
- Hysteresis Voltage is Provided (50 mV Typ.)

Applications


- As Control Circuit of Battery-Backed Memory
- As Measure Against Erroneous Operations at Power On-Off
- As Resetting Function for the CPU-Mounted Equipment --- PC, Printer, VTR, Fax, C-TV etc.
- As Measure Against System Runaway at Instantaneous Break of Power Supply etc.

Ordering Information

Type NO.	Marking	Package Code
S71xx	S71□□	TO-92

□□: Detecting Voltage Code

Outline Dimensions

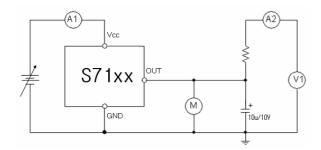
KSD-I0A005-000

Maximum ratings

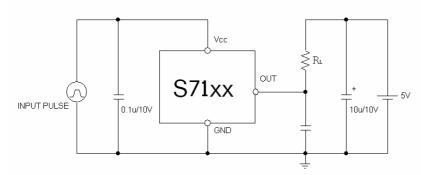
(Ta=25°C)

Characteristic	Symbol	Ratings	Unit	
Supply Voltage	V _{CC}	- 0.3 ∼ +15	V	
Power Dissipation	P_{D}	625	mW	
Output Voltage	$V_{ m OUT}$	- 0.3 ∼ +15	V	
Operating Temperature Range	T_{OPR}	- 30 ∼ +75	$^{\circ}\mathbb{C}$	
Storage Temperature Range	T_{STG}	- 55 ∼ +150	${\mathbb C}$	

Electrical Characteristics

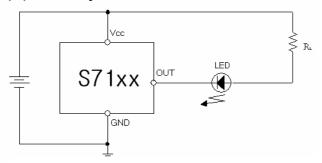

 $(V_{CC}=5V, Ta=25^{\circ}C)$

Electrical Character		Test	T =		3.51		=5 V, 1a=.	
Characteristic	cteristic Symbol Circuit Test Condition			dition	Min.	Typ.	Max.	Unit
Detecting Voltage		1	$R_{L}=200 \Omega$ $V_{CC}=H\rightarrow L$ $V_{OL}\leq 0.4V$	S7145	4.35	4.5	4.65	V
				S7142	4.05	4.2	4.35	
				S7139	3.75	3.9	4.05	
				S7136	3.45	3.6	3.75	
	$V_{ m S}$			S7133	3.15	3.3	3.45	
	V _S			S7131	2.95	3.1	3.25	
				S7129	2.75	2.9	3.05	
				S7127	2.55	2.7	2.85	
				S7125	2.35	2.5	2.65	
				S7123	2.15	2.3	2.45	
Hysteresis Voltage	ΔV_{S}	1	$R_L=200\Omega$, $V_{CC}=L\rightarrow H\rightarrow L$		30	50	100	mV
Temperature Coefficient of Detecting Voltage	V_{S} / Δ T	1	$R_L = 200 \Omega$, $Ta = -30 \sim +75 ^{\circ}\text{C}$		-	±0.01	ı	%/°C
Low Level Output voltage	V_{OL}	1	$R_L = 200 \Omega$, $V_{CC} = V_S$ Min		-	-	0.4	V
Leakage Current When OFF	I_{LEAK}	1	V_{CC} =15V, R_L =200 Ω		-	-	0.1	μΑ
Circuit current at ON	I_{CCL}	1	$V_{CC} = V_S Min$		-	300	500	μА
Circuit current at OFF	I_{CCH}	1	$V_{CC} = V_S Max + 0.1V$		-	30	50	μΑ
Threshold operating Voltage	V_{OPR}	1	$R_L = 200 \Omega$, $V_{OL} \le$	0.4V	-	0.8	1.6	V
Output Current at ON I	I _{OL} I	1	$R_L = 0 \Omega$, $V_{CC} = V$	_S Min - 0.05V	20	-	-	mA
Output Current at ON II	I _{OL} II	1	$R_L = 0 \Omega$, $V_{CC} = V$ $Ta = -30 \sim +75 ^{\circ}C$	S Min - 0.05V	16	-	-	mA
L→H Transmission delay time	$t_{\rm PLH}$	2	$R_L = 1.0 \text{ k}\Omega, C_L = 10$	00 pF	-	15	-	μs
H→L Transmission delay time	$t_{ m PHL}$	2	$R_L = 1.0 \text{ k}\Omega, C_L = 10$	00 pF	-	10	-	μs


 V_S : Standard Detection Voltage

KSD-I0A005-000 2

Test Circuit 1



Test Circuit 2


Application Circuit

(1) Battery Low Indicator

Note 1.: Connecting of LED and R2 obtains a voltage drop indicator.

(2) Resetting for CPU

KSD-I0A005-000 3

Electrical Characteristic Curves

Fig. 1 V_{OUT} – V_{CC}

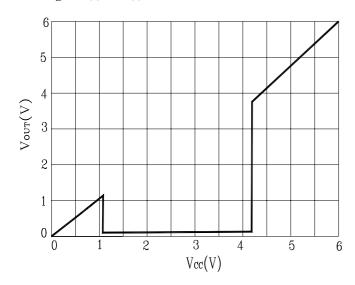


Fig. 2 $I_{\rm CC}$ - $V_{\rm CC}$

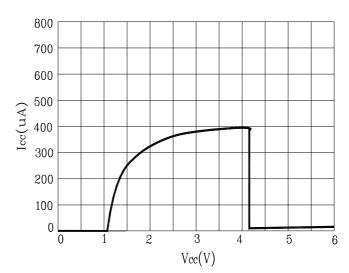


Fig. 3 I_{CCH} – Ta

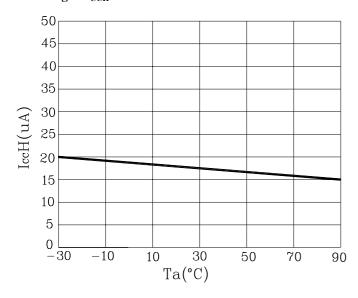
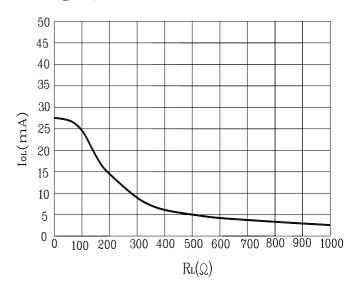



Fig. 4 $I_{OL} - R_L$

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.

KSD-I0A005-000 5