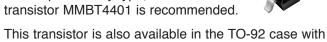

MMBT4403

SMALL SIGNAL TRANSISTORS (PNP)

SOT-23


Dimensions in inches and (millimeters)

Pin configuration

1 = Base, 2 = Emitter, 3 = Collector.

FEATURES

- PNP Silicon Epitaxial Planar Transistor for switching and amplifier applications.
- ◆ As complementary type, the NPN transistor MMRT4401 is recommended.

MECHANICAL DATA

Case: SOT-23 Plastic Package Weight: approx. 0.008g

the type designation 2N4403.

Marking code: 2T

MAXIMUM RATINGS AND THERMAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified

		SYMBOL	VALUE	UNIT
Collector-Base Voltage		-Vсво	40	Volts
Collector-Emitter Voltage		-VCEO	40	Volts
Emitter-Base Voltage		-V _{EBO}	5.0	Volts
Collector Current		-lc	600	mA
Power Dissipation FR-5 Board,* T _A =25°C Derate above 25°C		P _{tot}	225 1.8	mW mW/°C
Power Dissipation Alumina Substrate,** TA= Derate above 25°C	·		300 2.4	mW mW/°C
Thermal Resistance, Junction to Ambient	FR-5 Board Alumina Substrate	Rөja	556 417	°C/W
Junction Temperature		Tj	150	°C
Storage Temperature Range		Ts	-55 to +150	°C

^{*}FR-5 = 1.0 x 0.75 x 0.062 in.

^{**}Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.

MMBT4403

ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified

	SYMBOL	MIN.	MAX.	UNIT
Collector-Base Breakdown Voltage at $-I_C = 0.1$ mA, $I_E = 0$	-V _(BR) CBO	40	_	Volts
Collector-Emitter Breakdown Voltage ⁽¹⁾ at -I _C = 1 mA, I _B = 0	-V(BR)CEO	-V _(BR) CEO 40 -		Volts
Emitter-Base Breakdown Voltage at -I _E = 0.1 mA, I _C = 0	-V(BR)EBO	-V _{(BR)EBO} 5.0		Volts
Collector-Emitter Saturation Voltage ⁽¹⁾ at -I _C = 150 mA, -I _B = 15 mA at -I _C = 500 mA, -I _B = 50 mA	−VCEsat −VCEsat			Volts Volts
Base-Emitter Saturation Voltage ⁽¹⁾ at -Ic = 150 mA, -IB = 15 mA at -Ic = 500 mA, -IB = 50 mA	−VBEsat −VBEsat	0.75 -	0.95 1.30	Volts Volts
Collector-Emitter Cutoff Current at -VEB = 0.4 V, -VCE = 35 V	-lcex	_	100	nA
Emitter-Base Cutoff Current at –VEB = 0.4 V, –VCE = 35 V	-lbev	_	100	nA
DC Current Gain at -VcE = 1 V, -Ic = 0.1 mA at -VcE = 1 V, -Ic = 1 mA at -VcE = 1 V, -Ic = 10 mA at -VcE = 1 V, -Ic = 150 mA at -VcE = 2 V, -Ic = 500 mA	hfe hfe hfe hfe hfe	30 60 100 100 20	- - - 300	- - - -
Input Impedance at -V _{CE} = 10 V, -I _C = 1 mA, f = 1 kHz	h _{ie}	1.5	15	kΩ
Current Gain-Bandwidth Product at -V _{CE} = 10 V, -I _C = 20 mA, f = 100 MHz	fT	200	_	MHz
Collector-Base Capacitance at $-V_{CB} = 10 \text{ V}$, $I_E = 0$, $f = 1 \text{ MHz}$	Ссво	_	8.5	pF
Emitter-Base Capacitance at $-V_{EB} = 0.5 \text{ V}$, $I_{C} = 0$, $f = 1 \text{ MHz}$,	СЕВО	_	30	pF

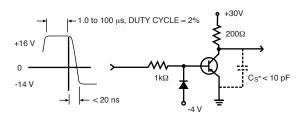
NOTES:

(1) Pulse test: pulse width $\leq 300 \mu$ duty cycle $\leq 2\%$

MMBT4403

ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified


	SYMBOL	MIN.	MAX.	UNIT
Voltage Feedback Ratio at -VcE = 10 V, -Ic = 1 mA, f = 1 kHz	hre	0.1 · 10⁴	8 · 10 ⁻⁴	_
Small Signal Current Gain at -VcE = 10 V, -lc = 1 mA, f = 1 kHz	h _{fe}	60	500	_
Output Admittance at -VcE = 1 V, -Ic = 1 mA, f = 1 kHz	hoe	1.0	100	μS
Delay Time at -l _{B1} = 15 mA, -l _C = 150 mA, -V _{CC} = 30 V, -V _{EB} = 2 V	td	-	15	ns
Rise Time at $-I_{B1} = 15$ mA, $-I_{C} = 150$ mA, $-V_{CC} = 30$ V, $-V_{EB} = 2$ V	tr	_	20	ns
Storage Time at $IB_1 = -IB_2 = 15$ mA, $-IC = 150$ mA, $-VCC = 30$ V	ts	_	225	ns
Fall Time at $IB1 = -IB2 = 15$ mA, $-IC = 150$ mA, $-VCC = 30$ V	tf	_	30	ns

SWITCHING TIME EQUIVALENT TEST CIRCUIT

FIGURE 1 - TURN-ON TIME

+16 V $1 \times 200\Omega$ $1 \times$

FIGURE 2 - TURN-OFF TIME

