SI-8000SD Series

Surface Mount, Separate Excitation Step-down Switching Mode

■Features

- Surface-mount package (TO263-5)
- Output current: 3.0A
- High efficiency: 79% typ. (SI-8033SD), 84% typ. (SI-8050SD)
- Requires only 4 discrete external components
- Internally-adjusted phase correction and output voltage
- Built-in reference oscillator (60kHz)
- Built-in overcurrent and thermal protection circuits
- Output ON/OFF available
- Soft start available by S.S pin

■Lineup

Part Number	SI-8033SD	SI-8050SD		
Vo (V)	3.3	5.0		
lo (A)	3			

■Absolute Maximum Ratings

Parameter	Symbol Ratings		Unit	Conditions		
DC Input Voltage	Vin	43* ¹	V			
Power Dissipation*2	Po	3	W	When mounted on glass-epoxy board 40 × 40 mm (copper area: 100%)		
Junction Temperature	Tj	+125	°C			
Storage Temperature	Tstg	-40 to +125	°C			
Thermal Resistance (Junction to Case)	<i>Ө</i> j-с	3	°C/W			
Thermal Resistance (Junction to Ambient Air)	θj-a	33.3	°C/W	When mounted on glass-epoxy board 40 × 40 mm (copper area: 100%)		

^{*1: 35}V for SI-8033SD

■Applications

- Power supplies for telecommunication equipment
- Onboard local power supplies

■Recommended Operating Conditions

		Ra			
Parameter	Symbol	SI-8033SD	SI-8050SD	Unit	
DC Input Voltage Range	Vin1	5.5 to 28	7 to 40	V	
Output Current Range*	lo	0 to 3.0		A	
Operating Junction Temperature Range	Tjop	-30	°C		
Operating Temperature Range*	Тор	-30	°C		

^{*:} Limited by Ta-PD characteristics.

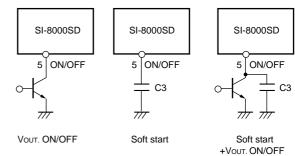
■Electrical Characteristics

(Ta=25°C)

	Parameter	Symbol	Ratings							
			SI-8033SD			SI-8050SD			Unit	
			min.	typ.	max.	min.	typ.	max.		
Outrot Val	Output Voltage	Vo	3.17	3.3	3.43	4.8	5.0	5.2	1	
Output voit		Conditions	V _{IN} =15V, Io=1A			Vin=20V, Io=1A			V	
	Efficiency	η		79			84			
Efficiency		Conditions		VIN=15V, Io=1A			VIN=20V, Io=1A		%	
0:	F	f		60			60		T	
Oscillation	n Frequency	Conditions		VIN=15V, Io=1A		Vin=20V, Io=1A			kHz	
Line Desuit	ation	ΔVOLINE		25	80		40	100		
Line Regulation		Conditions	V _{IN=8} to 28V, Io=1A			V _{IN} =10 to 30V, Io=1A			mV	
Lood Door	dation	ΔVOLOAD		10	30		10	40		
Load Regulation		Conditions	V _{IN} =15V, Io=0.5 to 1.5A			V _{IN} =20V, lo=0.5 to 1.5A			mV	
Temperature Coefficient of Output Voltage		ΔVο/ΔΤα		±0.5			±0.5		mV/°C	
Overcurrer	nt Protection	ls ₁	3.1			3.1				
Starting Cu	Conditions		Vin=15V			V _{IN} =20V			A	
0-4	Low-Level Voltage	VssL		0.2			0.2		V	
Soft	Start Pin* Outflow Current at Low Voltage	IssL	20	30	40	20	30	40		
Start Pin		Conditions		Vsst=0.2V				μΑ		

^{*} Pin 5 is a soft start pin. Soft start at power on can be performed with a capacitor connected to this pin.

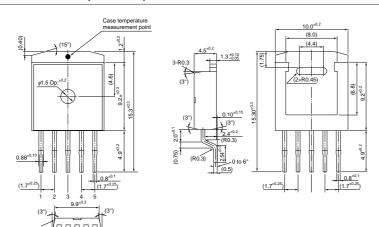
The output can also be turned ON/OFF with this pin.


The output is stopped by setting the voltage of this pin to $\ensuremath{\mathsf{Vss}}\xspace$ or lower.

Soft-start pin voltage can be changed with an open-collector drive circuit of a transistor.

When using both the soft-start and ON/OFF functions together, the discharge current from C_3 flows into the ON/OFF control transistor. Therefore, limit the current securely to protect the transistor if C_3 capacitance is large.

The ON/OFF pin is pulled up to the power supply in the IC, so applying the external voltage is prohibited.


If this pin is not used, leave it open.

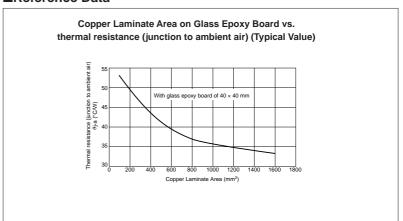
^{*2:} Limited by thermal protection circuit.

■External Dimensions (TO263-5)

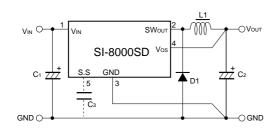
(Unit: mm)

Pin Assignment

- ① VIN
- ② SWout
- 3 GND
- 4 Vos
- ⑤ S.S


Plastic Mold Package Type Flammability: 94V-0

Product Mass: Approx. 1.48g


■Block Diagram

Oscillator Reset Latch & driver Thermal power supply Oscillator Reset Are filled Reference voltage S.S. Reference voltage Thermal protection Vos 4 Reference voltage Thermal protection Vos 4

■Reference Data

■Typical Connection Diagram

C₁: $50V/1000\mu$ F C₂: $50V/1000\mu$ F C₃: 0.01μ F

(only when soft start function is used)

L₁ : 150μH

D1: SPB-G56 (Sanken)

Diode D₁

• Be sure to use Schottky-barrier diode as D₁.

If other diodes like fast recovery diodes are used, ICs may be destroyed because of the reverse voltage generated by the recovery voltage or ON voltage.

Choke coil L₁

- If the winding resistance of the choke coil is too high, the efficiency may drop below the rated value.
- As the overcurrent protection starting current is about 3.5 A, take care concerning heat radiation from the choke coil caused by magnetic saturation due to overload or short-circuited load.

Capacitors C1, C2, and C3

- As large ripple currents flow through C₁ and C₂, use high-frequency and low-impedance capacitors aiming for switching-mode-power-supply use. Especially when the impedance of C₂ is high, the switching waveform may become abnormal at low temperatures.
- For C2, do not use a capacitor with an extremely low equivalent series resistance (ESR) such as an OS capacitor or a tantalum capacitor, which may cause an abnormal oscillation.
- C₃ is a capacitor for soft start. Leave pin 5 open if the soft start function is not used. This pin is pulled up with a pull-up resistor inside the ICs.
- @To create the optimum operating conditions, place the components as close as possible to each other.