

April 2009

KA7500C SMPS Controller

Features

- Internal Regulator Provides a Stable 5V Reference Supply Trimmed to ±1% Accuracy
- Uncommitted Output TR for 200mA Sink or Source Current
- Output Control for Push-Pull or Single-Ended Operation
- Variable Duty Cycle by Dead-Time Control (Pin 4)
 Complete PWM Control Circuit
- On-Chip Oscillator with Master or Slave Operation
- Internal Circuit Prohibits Double Pulse at Either Output

Description

The KA7500C is used for the control circuit of the pulsewidth modulation switching regulator. The KA7500C consists of 5V reference voltage circuit, two error amplifiers, flip flop, an output control circuit, a PWM comparator, a dead-time comparator, and an oscillator.

This device can be operated in the switching frequency of 1kHz to 300kHz. The precision of voltage reference (V_{REF}) is improved up to ±1% with trimming. This provides a better output voltage regulation. The operating temperature range is -25°C ~ +85°C.

Ordering Information

Part Number	Operating Temperature Range	© Eco Status	Package	Packing Method	
KA7500C			16-Lead Dual Inline Package (DIP)	Tube	
KA7500CD	.7500CD -25 to +85°C		16-Lead Small Outline Package (SOP)	Tube	
KA7500CDTF	KA7500CDTF		10-Lead Small Oddille Package (SOP)	Tape and Reel	

For Fairchild's definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.

Block Diagram

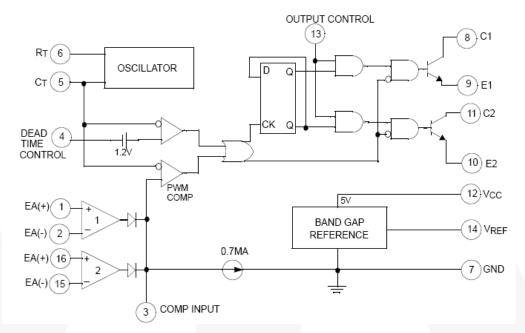


Figure 1. Block Diagram

Typical Application V_O=5∨ V_I =10V to 40V KSA1010 I_O=1A 1mH, 2A 0000 47Ω **≥**150Ω **≶**1MΩ 50μF 10V 12 V_{CC} 8 C1 COMP INPUT - 2 **≶**5.1KΩ 11 C2 V_{REF} 14 **≶**5.1KΩ - 15 KA7500C $5.1 \text{K}\Omega$ + 1 150 Ω ≶ + 16 C_{T} D.T GND E1 E2 O.C R_{T} 13 500µF **Ζ** 50μF ¥47KΩ ‡⁺0.001μF 10V 50V **GND ≤**0.1 Figure 2. Pulse-Width Modulated Step-Down Converter

Absolute Maximum Ratings

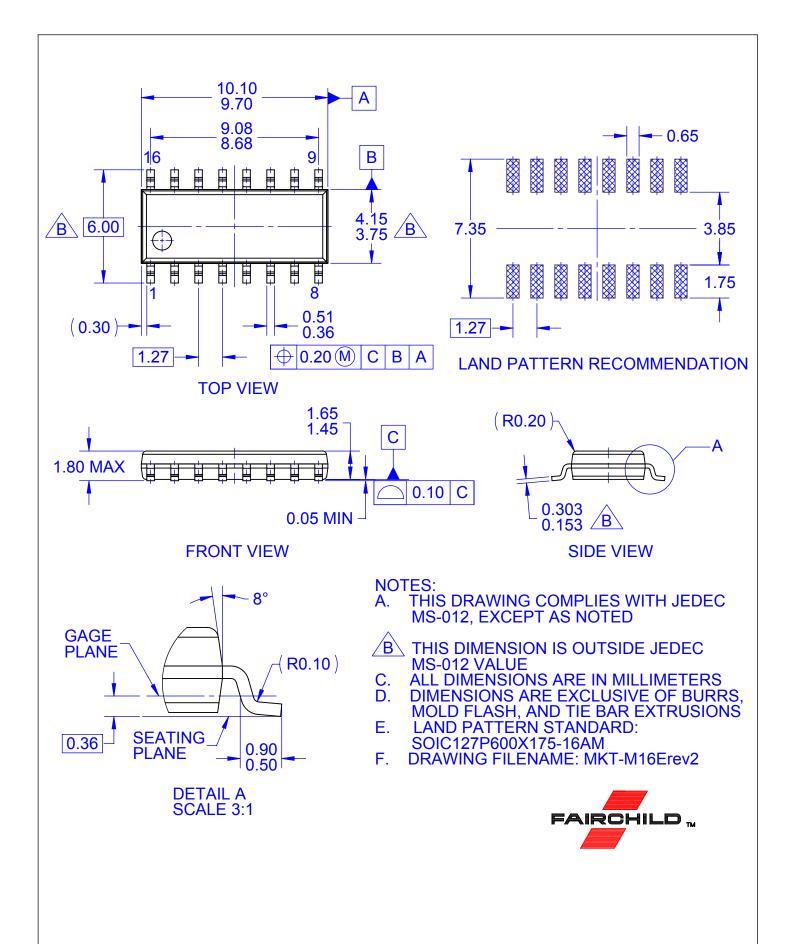
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

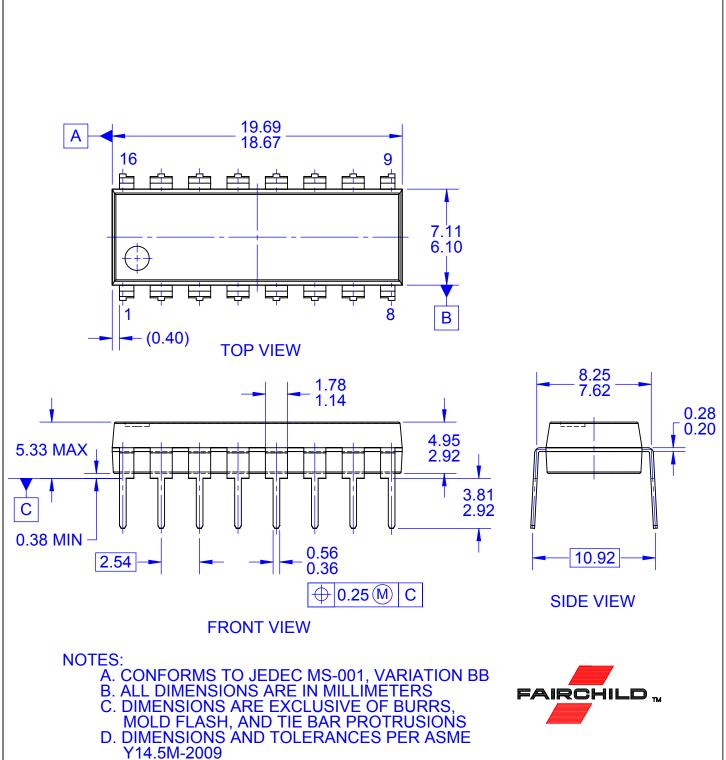
Symbol	Paramete	er	Min.	Max.	Unit
V _{CC}	Supply Voltage			42	V
Vc	Collector Supply Voltage			42	V
Io	Output Current			250	mA
V _{IN}	Amplifier Input Voltage			V _{CC} + 0.3	V
D	Power Dissipation	KA7500C		1	W
P_D		KA7500CD		0.9	VV
T _{OPR}	Operation Temperature Range		-25	+85	°C
T _{STG}	Storage Temperature Rang		-65	+150	°C
TJ	Junction Temperature			+125	°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{CC}	Power Supply Voltage	7	15	40	V
V_{C1}, V_{C2}	Collector Supply Voltage		30	40	V
I _{C1} , I _{C2}	Collector Output Current (Each Transition)			200	mA
V _{IN}	Amplifier Input Voltage	0.3		V _{CC} - 2.0	V
I _{FB}	Current Into Feedback Terminal			0.3	mA
I _{REF}	Reference Output Terminal			10	mA
R_T	Timing Resistor	1.8	30.0	500.0	KΩ
C _T	Timing Capacitor	0.0047	0.0010	10.0000	μA
fosc	Oscillator Frequency	1	40	200	kHz
V _{IN_PWM}	PWM Input Voltage (Pins 3, 4, and 13)	0.3		5.3	V


Electrical Characteristics


 V_{CC} = 20V, f = 10kHz, T_A = -25°C to +85°C, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
Reference	Section						
\/ -	Deference Output Vallage	I _{REF} =1mA, T _A =25°C ⁽¹⁾	4.95	5.00	5.05	V	
V_{REF}	Reference Output Voltage	I _{REF} =1mA	4.90	5.00	5.10	V	
R _{LINE}	Line Regulation	V _{CC} =7V to 40V		2	25	mV	
R _{LOAD}	Load Regulation	I _{REF} =1mA to 10mA		1	15	mV	
I _{SC}	Short-Circuit Output Current	V _{REF} =0V	10	35	50	mA	
Oscillation	Frequency						
		C_T =0.001 μ F, R_T =30 $K\Omega$		40.0			
fosc	Oscillation Frequency	C_T =0.01 μ F, R_T =12 $K\Omega$, T_A =25° C	9.2	10.0	10.8	kHz	
		C_T =0.01 μ F, R_T =12 $K\Omega$, T_A = T_{LOW} to T_{HIGH}	9.0		12.0		
Δf/Δt	Frequency Change with Temperature	C_T =0.01 μ F, R_T =12 $K\Omega$			2	%	
Dead-Tim	e Control Section						
I _{BIAS}	Input Bias Current	V _{CC} =15V, 0V≤ V ₄ ≤ 5.25V		-2	-10	μA	
D _(MAX)	Maximum Duty Cycle	V _{CC} =15V, V ₄ =0V, OC Pin=V _{REF}	45			%	
	Input Threshold Voltage	Zero Duty Cycle		3.0	3.3		
V_{ITH}		Maximum Duty Cycle	0			V	
Error Ampl	lifier Section	, , ,					
V _{IO}	Input Offset Voltage	V ₃ =2.5V		2	10	mV	
I _{IO}	Input Offset Current	V ₃ =2.5V		25	250	mA	
I _{BIAS}	Input Bias Current	V ₃ =2.5V		0.2	1.0	μA	
V_{CIM}	Common Mode Input Voltage	7V≤ V _{CC} ≤ 40V	-0.3		V _{CC}	V	
Gvo	Open-Loop Voltage Gain	$0.5V \le V_3 \le 3.5V$	70	95		dB	
Bw	Unit-Gain Bandwidth			650		kHz	
PWM Com	parator Section	I				7	
V _{ITH}	Input Threshold Voltage	Zero Duty Cycle		4.0	4.5	V	
I _{SINK}	Input Sink Current	V ₃ =0.7V	-0.3	-0.7	18/	mA	
Output Sec	ction			I			
V _{CE(SAT)}	Output Saturation Voltage Common Emitter	V _E =0V, I _C =200mA		1.0	1.3	V	
V _{CC(SAT)}	Emitter-Follower	V _C =15V, I _E =-200mA		1.5	2.5	,	
I _{C(OFF)}	Collector Off-State Current	V _{CC} =40V, V _{CE} =40V		2	100	^	
I _{E(OFF)}	Emitter Off-State Current	V _{CC} =V _C =40V, V _E =40V			-100	μA	
Total Device	ee	•				\prec	
Icc	Supply Current	Pin6=V _{REF} , V _{CC} =15V		6	10	mA	
Output Sw	itching Characteristics		•				
t _R	Rise Time, Common Emitter, Common Collector			100	200		
t _F	Fall Time, Common Emitter, Common Collector			25	100	ns	

Note:

1. This is guaranteed where the marking code of the package surface is over 027.

- E. DRAWING FILENAME: MKT-N16Erev3

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{AttitudeEngine^{\mathsf{TM}}} & \mathsf{FRFET}^{\mathsf{B}} \end{array}$

Aminda® Global Power Resource SM AX-CAP®* GreenBridne™

 AX-CAP^{®*}
 GreenBridge™

 BitSiC™
 Green FPS™

 Build it Now™
 Green FPS™ e-Series™

Current Transfer Logic™ Making Small Speakers Sound Louder

DEUXPEED® and Better™

Dual Cool™ MegaBuck™

EcoSPARK® MICROCOUPLER™

EfficientMax™ MicroFET™

EfficientMax™ MicroFET™
ESBC™ MicroPak™

MicroPak™
MicroPak2™
MillerDrive™
MillerDrive™
MotionMax™
MotionMax™

Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FastvCore™
FETBench™
FPS™

MotionMax"
MotionGrid®
MTi®
MTx®
MTx®
MVN®
mWSaver®
OptoHiT™

OPTOLOGIC®

OPTOPLANAR®

Power Supply WebDesigner™ PowerTrench®

PowerXS™

Programmable Active Droop™

QFET[®]
QS™
Quiet Series™
RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SenDes*
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
XSENS™

仙童®

SYSTEM SYSTEM

TinyBoost[®]

TinyBuck[®]

TinyCalc™

TinyLogic[®]

TINYOPTO™

TinvPower™

TinyPWM™

TinyWire™

TranSiC™

սSerDes™

TriFault Detect™

TRUECURRENT®*

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms				
Datasheet Identification		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: KA7500CDTF KA7500C